首页> 外文OA文献 >Asymptotic Bayesian Theory of Quickest Change Detection for Hidden Markov Models
【2h】

Asymptotic Bayesian Theory of Quickest Change Detection for Hidden Markov Models

机译:隐式贝叶斯最快变换检测理论   马尔可夫模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the 1960s, Shiryaev developed a Bayesian theory of change-point detectionin the i.i.d. case, which was generalized in the beginning of the 2000s byTartakovsky and Veeravalli for general stochastic models assuming a certainstability of the log-likelihood ratio process. Hidden Markov models represent awide class of stochastic processes that are very useful in a variety ofapplications. In this paper, we investigate the performance of the BayesianShiryaev change-point detection rule for hidden Markov models. We propose a setof regularity conditions under which the Shiryaev procedure is first-orderasymptotically optimal in a Bayesian context, minimizing moments of thedetection delay up to certain order asymptotically as the probability of falsealarm goes to zero. The developed theory for hidden Markov models is based onMarkov chain representation for the likelihood ratio and r-quick convergencefor Markov random walks. In addition, applying Markov nonlinear renewal theory,we present a high-order asymptotic approximation for the expected delay todetection of the Shiryaev detection rule. Asymptotic properties of anotherpopular change detection rule, the Shiryaev{Roberts rule, is studied as well.Some interesting examples are given for illustration.
机译:1960年代,Shiryaev在i.i.d.中开发了贝叶斯变化点检测理论。假设对数似然比过程具有一定的稳定性,这种情况在2000年代初由Tartakovsky和Veeravalli提出,用于一般随机模型。隐马尔可夫模型代表了各种各样的随机过程,在各种应用中非常有用。在本文中,我们研究了隐马尔可夫模型的贝叶斯Shiryaev变化点检测规则的性能。我们提出了一组规则性条件,在这种条件下,Shiryaev过程在贝叶斯上下文中是一阶渐近最优的,当错误警报的概率为零时,将检测延迟渐近地渐近化至某个阶次。隐马尔可夫模型的发展理论基于马尔可夫链表示的似然比和r-快速收敛。此外,应用马尔可夫非线性更新理论,针对Shiryaev检测规则的预期延迟检测,给出了高阶渐近逼近。还研究了另一种流行的变化检测规则Shiryaev {Roberts规则的渐近性质。给出了一些有趣的示例进行说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号